skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Chakraborty, Avipriyo"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. An increase in precipitation due to climate change has given rise to the number of landslide occurrences. Vetiver, which is a perennial grass, is becoming increasingly popular all over the world as a vegetation-based soil bioengineering tool for preventing landslides. Sunshine Vetiver grass, also known as Chrysopogon zizanioides is noninvasive and does not compete with other indigenous plants growing in the area. Even though it is a tropical grass, Vetiver can grow in a wide range of climate conditions, including those that are quite harsh in terms of both soil and climate. The roots can grow up to 3 m in length in a dense bushy root network under optimal conditions. In this review, the authors have studied the impact of Vetiver on landslide mitigation as a climate-adaptive slope repair tool based on the research undertaken so far. Furthermore, the authors have addressed the future potential and constraints associated with the use of Vetiver for landslide mitigation. It is seen that the use of Vetiver reduces pore water pressure. The high tensile strength of Vetiver roots provides reinforcement for slopes and enhances soil shear strength. Vetiver increases saturated hydraulic conductivity and reduces surface runoff and slip surface depth. Being a vegetation-based climate-adaptive technology, this grass exhibits great promise in its ability to effectively address landslide problems. However, the magnitude of the root impact diminishes as the depth increases, rendering Vetiver a more promising remedy for shallow landslide occurrences. In addition, Vetiver grass has a wide range of practical uses due to its unique characteristics, which provide additional benefits. Employment of Vetiver is cost-effective compared with traditional engineering methods, and it requires less initial maintenance, which implies that community-based initiatives can effectively address landslide prevention through Vetiver implementation 
    more » « less
  2. Due to cyclic wetting and drying, the hydro-mechanical behavior of unsaturated soil is impacted significantly. In order to assess the soil strength parameters, knowing the unsaturated behavior is important. Soil moisture content is an important parameter that can define the shear strength of the soil. Most of the highway slopes of Mississippi are built on highly expansive clay. During summer, the evaporation of moisture in the soil leads to shrinkage and the formation of desiccation cracks, while during rainfall, the soil swells due to the infiltration of water. In addition to this, the rainwater gets trapped in these cracks and creates perched conditions, leading to the increased moisture content and reduced shear strength of slope soil. The increased precipitation due to climate change is causing failure conditions on many highway slopes of Mississippi. Vetiver, a perennial grass, can be a transformative solution to reduce the highway slope failure challenges of highly plastic clay. The grass has deep and fibrous roots, which provide additional shear strength to the soil. The root can uptake a significant amount of water from the soil, keeping the moisture balance of the slope. The objective of the current study is to assess the changes in moisture contents of a highway slope in Mississippi after the Vetiver plantation. Monitoring equipment, such as rain gauges and moisture sensors, were installed to monitor the rainfall of the area and the moisture content of the soil. The data showed that the moisture content conditions were improved with the aging of the grass. The light detection and ranging (LiDAR) analysis was performed to validate the field data obtained from different sensors, and it was found that there was no significant slope movement after the Vetiver plantation. The study proves the performance of the Vetiver grass in improving the unsaturated soil behavior and stability of highway slopes built on highly expansive clay. 
    more » « less